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Abstract. Some staggered models are studied along three different lines: exact solvability 
(Yang-Baxter equations), the existence of other exact solutions called disorder solutions 
and their group of symmetry. The analysis, based on the commutation of row to row 
transfer matrices of arbitrary size N, suggests that the exactly solvable models are either 
of non-staggered type or of free-fermion staggered type. In contrast, disorder solutions 
can easily be exhibited for staggered models: the example of the Ashkin-Teller model is 
analysed. Finally, the symmetry group of these models is seen to be a straightforward 
generalisation of the one of homogeneous models. 

1. Introduction 

Most of the exactly integrable models known today in statistical mechanics or in 
quantum field theory are associated with the existence of the so-called Yang-Baxter 
equations (or star-triangle relations). A great number of solutions have been found 
so far (Zamolodchikov and Zamolodchikov 1979, Schultz 1981, Perk and Schultz 1980, 
Baxter 1982). 

Still, an exhaustive classification remains a challenging open problem for the vertex 
as well as for the interaction-round-a-face ( I R F )  spin models (Jimbo and Miwa 1985). 
One should, however, note two papers, by Belavin and Drinfeld (1983) and Jimbo 
(1986), which constitute important progress in this direction. The staggered models 
are an interesting class of problems of statistical mechanics on lattices: many important 
two-dimensional models like the (non-critical) Potts model or the Ashkin-Teller model 
can be represented as staggered six- or eight-vertex models (Baxter et a1 1978, Baxter 
1982). However, very few exactly solvable staggered (vertex or I R F )  models are known. 
The known cases of integrability correspond either to free-fermion models (Fan and 
Wu 1970) or to a vanishing condition of the staggering field (critical Potts models or 
the self-dual Ashkin-Teller model corresponding to some non-staggered six- or eight- 
vertex models). 

This vanishing field condition is reminiscent of the situation for the two-dimensional 
Ising model in a magnetic field where the presence of the magnetic field destroys the 
solvability. Recall that among the few models that have been solved in the presence 
of an appropriate symmetry-breaking field are the spherical and the KDP ferroelectric 
models (Montroll 1949, Lieb and Wu 1972). 
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One could think of basing a classification of staggered models on the analysis of 
the Yang-Baxter equations. One can, for instance, imagine replacing each of the three 
vertices (resp I R F  Boltzmann weights) occurring in these equations by four vertices 
(resp four IRF Boltzmann weights) corresponding to the elementary cell of the staggered 
model (see figure 1). In fact, the Yang-Baxter equations are much more numerous 
and complicated to deal with than in the non-staggered case. This is why we suggest 
another way of tackling this problem. 

Figure 1. The square lattice showing the typical faces ( i ,  j ,  k, I )  and ( j ,  m, n, k )  corresponding 
to the staggering of the model. 

The Yang-Baxter equations are a sufficient and, to some extent, necessary condition 
for the commutation of transfer matrices of arbitrary size to be satisfied (Lochak and 
Maillard 1986). The analysis of the integrability of lattice models through the algebraic 
consequences of the commutation of transfer matrices of small size have been developed 
previously (Maillard and Garel 1984). This approach also sheds some light on the 
parametrisation of these models which is a necessary step towards any exact calculation 
(elliptic or rational uniformisation, etc). 

In 9 2 of this paper we propose an analysis towards a classification of these staggered 
models based on these ideas. 

Besides the previous exact solutions associated with a Yang-Baxter structure, there 
exist other exact solutions, the so-called disorder solutions (Stephenson 1970, Enting 
1977) that correspond to some trivialisation (some dimensional reduction) of the model 
on some subvarieties of the parameter space. In § 3 of the paper disorder solutions 
are considered for staggered models. 

Finally, an infinite discrete group of symmetries, the automorphy group, already 
exhibited on homogeneous models (Jaekel and Maillard 1982), is generalised to the 
staggered case in 9 4. 

2. Transfer matrix commutation 

2.1. ?le staggered I R F  model and their transfer matrices 

Staggered models can be introduced on vertex models or interaction-round-a-face ( I R F )  

spin models (Baxter 1980). 
Let us recall the I R F  model: to each site of the square lattice one associates an 

Ising spin ai = * l .  Let i, j ,  k, 1 (resp j ,  m, n, k) be the four sites round a face of type 
A (resp type B ) ,  as in figure 1 .  Allow only interactions between spins round a common 
face. Let us denote by WA(ai, aj, ak, a,) (resp WB(aj ,  am, a,, q)) the Boltzmann 
weight of the interactions within face ( i , j ,  k, I )  (resp ( j ,  m, n, k ) ) .  
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The product is over all faces of type A and also of type B of the square lattice and 
the sum is over all configurations of all the spins. We restrict ourselves to Boltzmann 
weights satisfying the spin reversal property 

w(',, uk, = W(-ut, - O k ,  -U/). ( 2 )  
In this case the model can also be represented as an eight-vertex one (Kadanoff and 
Wegner 1971). It is more convenient in the framework of the transfer matrix commuta- 
tion to deal with the I R F  spin representation. 

Because of this symmetry ( 2 )  each of the Boltzmann weights W, and WE depends 
on 23 = 8 parameters corresponding to the different spin configurations around the 
faces. These eight homogeneous parameters will be denoted by a , ,  b, ,  c,, d , ,  e , ,  J;,  g , ,  
h , ,  according to the spin configurations ( i  = 1 for type A and 2 for type B) 

(U,, U,) 
- _  ++ +-  -+ 

++ a b C d 

d C b _ _  a 

Let us now introduce the row to row transfer matrix for a lattice with 2N columns 
and periodic boundary conditions (see figure 2) .  Let U],. . . , uN be the spins on the 
lower rows, and U;,. . . , U" the spins on the upper rows. Periodic boundary conditions 
mean that uN = uo, 

The transfer matrix, which corresponds to N dimers A-B, is a 22N x 2" matrix 
and will be denoted by TN(A, B ) .  We study at the same time the exact solvability of 
two different types of staggered models: the models that are staggered in the two 
directions of the square lattice (denoted type I, like a chessboard, see figure 3 ( a ) )  and 

= u;. 

I 4 1  ! b l  

Figure 3. ( a )  A chessboard staggering (type I). ( b )  A one-dimensional staggering (type 11). 
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the models corresponding to a staggering in only one direction (denoted type 11, see 
figure 3( b ) ) .  The vertex representations of the Potts and Ashkin-Teller models corre- 
spond to type I. For the models of type I the transfer matrix equals the product 
%j“(A, B )  = TN(A, B )  TN(B, A ) .  For the models of type I1 one considers directly the 
row to row transfer matrix T,(A, B ) .  One should make the following remark for the 
models of type 11: these models are exacty solvable if the column to column transfer 
matrices ? ( A )  and ? ( B )  belong to the same family of commuting transfer matrices 
and, in that case, the partition function is just the product of the one for the 
homogeneous model with Boltzmann weights A only and the one with Boltzmann 
weights B only. This corresponds to a so-called 2-invariant model (Baxter 1978). 
This situation will be excluded. In the following we study the possibility that the row 
to row transfer matrix T,(A,  B )  belongs to a family of commuting transfer matrices. 
Let us also remark that the transfer matrix T,(A, B )  (and therefore the partition 
function) is left unchanged by the ‘gauge’ transformations (Gaaf and Hijmans 1975): 

and that the partition function (with appropriate periodic boundary conditions) is also 
left invariant by the transformations 

or 

Here D, A A  and A B  are arbitrary functions of their arguments. The two transfer 
matrices we consider from now on depend on two sets of homogeneous parameters. 

2.2. Algebraic invariants 

Basically the idea of our approach is the following: if some (complicated) staggered 
Yang-Baxter equation is actually satisfied for these models there necessarily exists a 
family of commuting transfer matrices for arbitrary size N, even for N very small: 

[@, (A ,  B ) ,  V N ( A ’ ,  B’)1=0 

[TN(A,  B ) ,  TN(A’, B ’ ) l = O  

N =  1 , 2 , .  . . fortype I 

N = 1,2, .  . .for type 11. 

( 5 a )  

(5b) 

It can be shown (Lochak and Maillard 1986) that these conditions lead necessarily to 
a set of algebraic equations in the homogeneous parameters of the model (here 
a, ,  b,, c,, d,,  . . . , g,) of the form cp,(A, B )  = cp,(A’, B’). 

The equations cp,(A, B) = constant thus give a natural foliation of the parameter 
space of these families of commuting transfer matrices. Let us examine these necessary 
conditions for small N values. For N = 1, both T,  and %, are 4 x 4  matrices that 
reduce (because of the spin reversal symmetry) to two 2 x 2 matrices: the algebraic 
conditions corresponding to the commutation of 2 x 2 matrices are easy to write. 
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( a , ,  . . . , gi + a ; ,  . .., g j )  (6) 

Similarly, for type I1 we also obtain four equations: equations (6), (8) and (9) are 
unchanged and (7) is replaced by 

Let us now consider the necessary conditions for N = 2. The calculations have been 
performed using the formal language REDUCE 3.1 (Heam 1984). General results are 
algebraic expressions that are too large to be written here: from now on we impose 
the constraints: gi = ai, hi = bi,  ei = ci, f; = d i .  This means restricting the general 
staggered eight-vertex model to the staggered symmetric one. (Do not confuse our 
parameters a, b, c, d with the canonical parameters of the Baxter model.) Note in this 
case that equations (6)-(10) are identically satisfied. The two matrices T2 and V 2  are 
2 4 x 2 4  matrices that can be reduced (because of the spin reversal symmetry and the 
shift invariance of the transfer matrices of two lattice spacing) to six 2 x 2  matrices 
and a 4 x 4 matrix. The algebraic equations corresponding to the commutation of the 
2 x 2 matrices can be written as six equations of the form 

a = l ,  . . . ,  6. (11) 

As an example, some of the expressions I, are given in the appendix for types I and 
11. All the I, are homogeneous rational expressions of order two for Zl and Z2 and of 
order four for Z 3 ,  I,, Z5 and Z 6 .  In order to deal with the 4 x 4 matrix we have used 
the following trick: the commutation [ M ,  M’] = 0 implies the relation [I + aM + p M 2  + 
y M 3 ,  I + a’M’”’M’’+ Y ’ M ’ ~ ]  = 0 for all a, p, y, a’, p’ ,  7’.  One can use these new 
parameters to obtain zero for all but one coefficients in the same row (or column). 
The homogeneous algebraic relations cp(a,, . . . , d2)  = cp(a;, . . . , d ; )  thus obtained are 
huge (the sum of thousands of terms of degree 24 for the numerator and for the 
denominator) and will not be given in this paper. 

Let us also note that one obtains, apriori, an infinite number of algebraic expressions 
corresponding to the commutation conditions for the infinite number of size N. The 
integrability corresponds to the remarkable situation where this infinite set of algebraic 
expressions is redundant and reduces to a finite set of independent algebraic 
expressions. As remarked in previous papers (Maillard and Garel 1984) the algebraic 
variety defined by these equations must be invariant under some exact symmetries of 
the model such as the inversion relation or the duality relation. 

In general, the number of equations (1 1) (and their transforms by these transforma- 
tions) greatly exceeds the number of parameters of the two transfer matrices (four sets 
of four homogeneous parameters a,, . . . , d z ,  a ; ,  . . . , dS). This amounts to saying that 

Iu(a19 b l ,  C l ,  4 ,  a,, b2, c2, d 2 ) = I u ( 4 , .  . -1 
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the solution is the trivial commutation of a matrix with itself (up to an homogeneous 
factor): a, = a:, 6, = b: ,  c, = c :  and d,  = d: .  So the question is to impose some conditions 
on the model (such as symmetries or exclusion of certain spin configurations) to restrict 
the parameter space to certain subvarieties so that the number of parameters decreases 
but the number of algebraic expressions I , ,  vu,. . . , that  foliate the parameter space 
decreases even more sharply. The condition of vanishing of the staggering is obviously 
such a condition. This restricts the parameter space to the four homogeneous para- 
meters a, b, c, d of the Baxter model and there remain only two independent algebraic 
expressions Z, ( I4 and I6 previously mentioned). 

One checks easily that all these algebraic expressions ( 1 1 )  given in the appendix 
simplify drastically. In this limit, where the staggering vanishes, the N = 1 conditions 
are automatically satisfied and it is straightforward to verify that for N = 2 the algebraic 
expressions I ,  (for type 11) simplify to give two independent algebraic expressions, 
namely: 

a’+ d 2  - b 2 -  c2 a’+ d 2  - b 2 -  c2 
I4 = I6 = 

2ad 2bc 

(1/12 is equal to 0, I3 and I s  are equal to 1, II is equal to - 1 ) .  One recovers (as one 
should) the well known elliptic uniformisation of the symmetric eight-vertex model 
(Baxter 1982) as an intersection of two quadrics, 14=constant, Z,=constant, in P3 
(Clebsch’s biquadratic). 

In view of the algebraic expressions of the appendix it seems at first sight that one 
is automatically led to ask for a vanishing condition of the staggering. This is actually 
not true: let us see how some quadratic conditions on the parameters of the model 
(the free-fermion conditions (Lin and Wang 1977)) drastically simplify the previous 
algebraic expressions in a quite non-trivial way. Under the quadratic constraints on 
the two Boltzmann weights 

i = 1 , 2  (12)  
remarkable trivialisations occur. For instance, in the type I1 model one can verify that 

21,= 1 I4 = 0 16 = 0 I ,  = 0 I ,  = - 1 .  ( 13 )  
Moreover, in order to ensure integrability, it is important that the inverse relation does 
not generate too many new algebraic invariants. Indeed, one can verify that I ,  is 
invariant. 

Restricted to other quadratic conditions that can be seen as the images of condition 
(12) through weak graph duality transformations (Baxter 1982), other trivialisations 
occur; for instance, 

af  + d f  - b f  - cf = 0 

a,d, = b,c, i = 1 , 2  (14) 

I s  = 1/213 1 4 = * 1 6  1/ I 2  = 0. (15 )  
The inverse relation leaves the set of algebraic invariants globally stable as it should. 

One can then see that the type I model with condition (14) corresponds to two 
different decoupled anisotropic Ising models. 

The type I1 model when condition (14) is satisfied corresponds to two decoupled 
replicas of the same checkerboard Ising model. Conditions (12) and (14) correspond 
to exactly solvable free-fermion models. Besides these simple free-fermion cases we 
have not been able to see any other possibilities of exactly solvable staggered models. 

leads to 
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3. Disorder solutions on staggered models 

3.1. Disorder solutions 

Solutions related to the Yang-Baxter equations are actually not the only exact solutions 
that have been obtained on lattice models of statistical mechanics; the so-called disorder 
solutions also exist (Stephenson 1970, RujPn 1984). 

These two sets of exact solutions are very different in nature: the disorder solutions 
have, because of some effective dimensional reductions, a much more simple analytical 
structure (Georges er af 1986). For many examples such a property is provided by a 
simple local condition bearing on the Boltzmann weight of the elementary cell generat- 
ing the lattice. This local condition enables one to get an eigenvector of the transfer 
matrix that is a simple direct product of factors. 

Even if disorder solutions can be formulated in the framework of I R F  models 
(Baxter 1984) we use here the vertex representation which is better suited for the 
present study. The case of the staggered sixteen-vertex model is described by two 4 x 4 
matrices associated with the two types of Boltzmann weights of the model. Let us 
denote by R I  and R, these two 4 x 4  matrices. We now impose the following local 
conditions. The image of a pure tensor product by these two matrices is also a pure 
tensor product, i.e. 

f l l U l @ V l = A l U 2 @ V 2  (16a) 
0, U,@ V, = A 2  U ,  @ VI (166) 

with 

Equations (16a) and (166) are two sets of four homogeneous conditions leading, after 
elimination of p ,  , p z ,  q1 , q 2 ,  to a subvariety of codimension two of the parameter 
space of this staggered model. The two prtvious conditions imply relations between 
the diagonal transfer matrices T(R,) and T(R,), corresponding to the two layers of 
the staggered model, and two vectors that are simple tensor products of the U, and V,: 

One has the relations 
I+,)= U,@V,@U,@V,@ . . .  

T ( W + I )  = AI”I+2) 

m,)l+*) = A,NI+ l )  

i = 1,2. 

where N denotes the number of vertices in the two layers. 

?(a,) (see figure 4) and has I$,) for eigenvector with eigenvalue ( A I A 2 ) ?  If 
The diagonal transfer matrix corresponding to two layers is the product T = T ( 0 , )  

has 

Figure 4. Diagonal transfer matrix corresponding to two layers. 
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some overlap with the maximum eigenvector of T (this is true in general) we can 
deduce that the partition function per site will be ( h l A z ) l ’ 2 .  In this way one obtains 
the disorder solutions for the partition function of these staggered vertex models. 

Let us now consider the staggered symmetric eight-vertex model. The matrices 0, 
are equal to 

0 0 d, 

0 e, b, 0 
d, 0 0 a, 

i = 1 , 2  

(here the notation is the canonical one for vertex models). 
In this case one has the following results. 
(i) For p l = q 2 = + l ,  q l = p 2 = + 1 ,  one has A , = a , + d ,  and A 2 = a 2 + d ,  when the 

following two conditions are satisfied: 

a, + d ,  = b ,  + c1 (18a) 

~ 2 + d 2 =  b,+c2. (18b) 

(ii) For p 1 = q 2 = - 1 ,  q 1 = p 2 = + l ,  one has A , = a , - d ,  and h 2 = a 2 - d 2  when the 
following two conditions are satisfied: 

U ,  + b, = C ,  + d ,  (190) 

a 2 + b , = c 2 + d 2 .  (19b) 

Let us consider the important subcase of the Ashkin-Teller model represented as 

a, = a,= a 6 ,  = b2 = b c , = d , = c  c2 = d ,  = d. 

a staggered symmetric eight-vertex model (Baxter 1982): 

One has the following result for p ,  = q2 = -1 and  q ,  = p 2  = $1: 

(h1A2)1’2 = a - d 

a +  b = c + d .  (20b) 

A more specific subcase corresponds to the symmetric Ashkin-Teller model that can 
also be represented as a staggered six-vertex model (Kohmoto er al 1981): 

a ,  = b2=  a a, = b ,  = b c , = c 2 = c  d ,  = d ,  = 0. 

(20a) 

when 

In this case, for p ,  = q2 = -1 and q, = p 2  = +1, 

(h,A2)l” = (ab)”’ (21a) 

a + b = c .  (21b) 

when 

As far as the partition function. is concerned, condition (216) reduces the symmetric 
Ashkin-Teller model to a four-state scalar (standard) Potts model. Obviously a trivial 
expression like ( A 1 A 2 ) ’ ”  is different from the partition function of the four-state Potts 
model (known only for a = b (Baxter er a1 1978)). This situation corresponds to a 
case where a n  eigenvector for the two-layer diagonal transfer matrix can be exhibited 
but the corresponding eigenvalue is not the largest eigenvalue; a + b = c does not 
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correspond to a disorder solution where the partition function can be calculated exactly. 
However, for this ‘pseudo’ disorder solution one sees that a trivialisation of one 
eigenvalue in the whole spectrum of the two-layer diagonal transfer matrix occurs. 
Let us also note that on this particular line the symmetry group of the spin Z 2 0 Z 2  is 
enlarged to Z, (see also Zamolodchikov and Monarstirskii 1979). 

These disorder (or ‘pseudo’ disorder) solutions also shed some light on the phase 
diagram of the models ( R u j h  1984, Domany and Gubernatis 1985, Blote er al 1986). 
For these varieties the partition function (or just one of the eigenvalues) is a perfectly 
simple analytic expression. If there is an intersection of these varieties with the critical 
manifold, this is an indication of a multicritical point for which a cancellation of 
singularities could occur. Actually, for the symmetric Ashkin-Teller model the tri- 
critical point of the phase diagram lies on the intersection of the self-dual line with 
the ‘pseudo’ disorder line (21b) (see figure 5 ) .  

Figure 5. Phase diagram of the symmetric Ashkin-Teller model and the ‘pseudo’ disorder 
line. SD: the self-dual line of the Ashkin-Teller model. D: the pseudo disorder line. 
PIoUPI,UP12: the critical lines. w =  b / ( a + c ) ,  w ” = ( a - c ) / ( a + c ) .  

3.2. Disorder varieties and algebraic varieties 

When the model is exactly solvable, it has been remarked (Baxter 1986, Maillard 1986) 
that a relation between the parametrisation of the model (in terms of algebraic varieties 
as illustrated in P 2)  and the expression of these disorder varieties should exist. The 
algebraic varieties associated with the disorder varieties must correspond to some 
trivialisation of the previous foliation of the parameter space in terms of algebraic 
varieties. For the Baxter model, for instance, the modulus of the elliptic functions that 
occur is given by the following equation (Baxter 1982, p 246): 

1 
k 4abcd 

( a  - b - c - d ) ( a  - b +  c +  d ) ( a  + b - c + d ) ( a +  b + c -  d )  
k+--2= (22) 
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k = -1 corresponds to such a trivialisation of the elliptic parametrisation (the image 
of the modulus k under the Landen transformation k + 2 J k / (  1 + k )  becomes infinite). 
This k = -1 condition is a quartic algebraic condition that reduces to a set of linear 
conditions on a, b, c and d :  

a + d = b + c  ( 2 3 )  

a + c = b + d  (24) 

a + b = c + d. ( 2 5 )  

The first two conditions are just the known disorder conditions on the model. Equation 
( 2 5 )  is another one; it corresponds to the previous situation of a simple eigenvector 
for the two-layer diagonal transfer matrix ( a ,  = a ,  = a, b ,  = b, = b, c, = cz = c, d ,  = d ,  = d 
and p 1  = q2 = -1, p 2  = q1 = +1, A I  = A 2  = ( a  - d ) ) .  

Similar kinds of trivialisations of the algebraic varieties detailed in § 2 are expected 
for the staggered models. For instance, in the free-fermion cases previously described 
and, in particular, in the case where the staggered model reduces to decoupled 
checkerboard Ising models, the associated modulus k vanishes (Jaekel and Maillard 
1984). 

4. The symmetry group of lattice models 

4.1.  The symmetry group of the staggered models 

An exact functional relation for the partition function, first introduced in the framework 
of exactly solvable models, is known to exist for any values of the parameters of the 
vertex or I R F  spin models; it is called the inversion relation (Stroganov 1979, Baxter 
1980) and is derived from a simple geometrical relation of the local Boltzmann weights 
(Jaekel and Maillard 1982). 

Let us recall briefly some basic results for a quite general homogeneous sixteen- 
vertex model. Its sixteen parameters can be seen as the coefficients of a 4 x 4 matrix Cl: 

The functional inversion relation relates the partition function for the parameters 
corresponding to R and its analytic continuation for the parameters corresponding to 
the inverse matrix a-’: 

I 
n-n-1 

z({R})z({R-’}) = 1. 

To this symmetry one must add some obvious symmetries of the model (see figure 6 ) .  
For instance, the symmetry with respect to the line D1 corresponds to the simultaneous 
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I 

I 

Figure 6. Symmetries of the square vertex model. 

permutation i-j and k-l  that is associated with the following transformation 
R +'I PRP, with 

The partition function is obviously invariant under such a transformation. I t  is also 
invariant under a rotation of r of the lattice: this rotation corresponds to the permuta- 
tion ( i , j ) + + ( k ,  I ) ,  i.e. to transpose the matrix R -S2tR. The symmetry with respect to 
the line D2 is associated with the transformation R + '3 P'RP. Let us denote by S,  
the transformation corresponding to the symmetry of rotation of r / 2  of the lattice. 
S,  and the transformations S ,  , S2, S3 generate the symmetry group of the square. One 
verifies immediately that the transformations Z, SI ,  S2 and S ,  commute. This is not 
the case for S, .  Because of these properties, it is easy to see that any element of the 
group generated by SI ,  S2, S , ,  S4 and I can be written as s(S,Z)", n EZ, where s 
denotes an element of the group of the square. One can also add to these symmetries 
the 'gauge' symmetries (weak graph duality) that also leaves the partition function 
invariant (Gaaf and Hijmans 1975). These transformations correspond to a conjugation 
by a matrix that is a tensor product of two 2 x 2 matrices R -+ p O a R p - ' O a - ' .  The 
transformations Si act simply on ( p, a): 

( P ,  a)-+ (a, P )  

( P ,  a) -+ ( P - l ,  a-') 

( P ,  a) + C P ,  ta) 

It is thus a straightforward matter to see that any element of the previous group 
combined with this gauge group can be written ~ S ( S , I ) ~  where g denotes an element 
of the gauge group. Let us now consider a staggered model: this corresponds to dealing 
with a larger elementary cell made up of four different Boltzmann weights A, B, C, D 
(see figure 7)  instead of only one elementary vertex. The parameter space represented 
by a 4 x 4 matrix R is now replaced by four such matrices. It is easy to see that any 
element of the previous group enlarged by these new symmetries of the square will 
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Figure 7. Elementary cell depending on four Boltzmann weights corresponding to a 
staggered vertex model. 

correspond (up to a permutation of the A, B, C and D )  to a transformation gAsA(S,Z)"A 
on RA where gA denotes an element of the gauge group (and similarly on a,, R, and 
a,), In fact one can be easily convinced that nA = n, = n ,  = n,. Up to a semidirect 
product by a simple finite group and the gauge groups, the group is isomorphic to Z 
(this result should be compared with the group analysis performed on the checkerboard 
Potts model (Jaekel and Maillard 1984)). Along this line one would have similar 
results for more general two-dimensional models associated with larger elementary cells. 

This is in contrast with the situation for the three-dimensional models. Let us 
consider, for instance, a Boltzmann weight corresponding to a three-dimensional vertex 
model. The 4 x 4 matrix s1 is now replaced by a 2' x 23 matrix corresponding to the 
'in' and 'out' triplets ( i , j ,  k )  and (I, m, n )  (see figure 8). 

As before, the inversion relation corresponds to replacing R by its inverse matrix. 
The partition function is also invariant under the symmetries of the cube. These 
symmetries are represented by permutations of the coefficients of the matrix. Only 
some of these transformations on R commute with the inversion relation I (for instance, 
the permutation i-j and I-m). 

Let us denote by R ,  a rotation by 7 1 2  around the ( i ,  I )  axis and by R2 a rotation 
by 7 1 2  around the ( j ,  m )  axis. Let us also have U = R , I  and V =  R,Z. In general, 
the two transformations U and V generate an infinite non-solvable group of transforma- 
tions. The group is a free group: in general there is no relation at all between U and 
V. It is not even clear if this group of transformations is discrete or continuous. This 
is a drastic difference between dimensions two and three. 

This remark has very important consequences on the existence of exactly solvable 
models in three dimensions. As seen in previous papers (Maillard and Garel 1984, 
Maillard 1986) and also in § 2, the exactly solvable models are necessarily parametrised 
by algebraic varieties (the expressions I , ,  I*, . . . , of § 2 for instance). These varieties 

n 

k 

Figure 8. Elementary vertex for a cubic lattice. 
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have a set of automorphisms corresponding to the previous infinite group. It is very 
unlikely that any algebraic varieties could have such a large set of automorphisms 
(like such an infinite set of non-linear transformations). This could confirm a somewhat 
disappointing situation: the exact solvability could be basically a two-dimensional 
feature. 

5. Conclusion 

An analysis based on the commutation of transfer matrices of arbitrary size N for 
small N has been performed (using formal language calculations) in the case of the 
staggered eight-vertex model. The necessary conditions corresponding to these finite- 
size transfer matrix commutations suggest that these commutations correspond either 
to an absence of staggering or to staggered free-fermion models. This analysis 
emphasises several remarkable features of the parametrisation of an exactly solvable 
model: the set of algebraic equations deduced from the commutation of finite-size 
transfer matrices has to be redundant and the algebraic variety defined by these 
equations has to be invariant under the inversion relation and the other exact symmetries 
of the problem. These are extremely drastic constraints and it is enlightening to see 
how the free-fermion conditions fulfil these constraints. This analysis can of course 
be generalised in a straightforward manner for more complicated elementary cells 
(three kinds of Boltzmann weights instead of two) or applied to a diagonal transfer 
matrix formalism instead of a row to row (or column to column) transfer matrix 
formalism. 

On the other hand, the disorder solutions of the staggered models are not so 
exceptional. For instance, we have been able to exhibit quite easily a ‘pseudo’ disorder 
solution for the symmetric Ashkin-Teller model (we are able to exhibit an eigenvector 
and the corresponding eigenvalue of the two-layer diagonal transfer matrix of this 
staggered vertex model). 

Finally, the symmetry group of the staggered model (generated by the inversion 
relation and the other symmetries of the model) is seen to be a simple extension of 
the symmetry group of the non-staggered model. In addition, one remarks on a 
fundamental difference between the symmetry groups of the two-dimensional models 
(even very general) and of the three-dimensional models: for three-dimensional models 
this group is in general too large to allow any exactly solvable model. 

In conclusion, the analysis performed in this paper enables us to see how the 
generalisation corresponding to the staggering (therefore drastically enlarging the 
parameter space) affects all these exact structures: only a small number of new solutions 
of the Yang-Baxter equations are obtained through this generalisation. On the other 
hand, more simple exact structures like the disorder solutions and the symmetry group 
support this generalisation very well. 
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Appendix 

Type I:  

( a : +  d:) (  b:+ c:) - (b:+ c:)(a:+ d : )  
I ,  = 

12 = 

2 ( d I 4 a , a 2  - blb2clc2) 

( a :  + d:)(  a: + d:)  - ( b :  + c:)( a: + d : )  
2 ( a i d i b 2 ~  - a2d2bici) 

Type 11: 

b:d:- b:a:+c:a:- c:d: 
b:a:- b:d:+ c:d:- c:a: 

b:b:- b:c:- b:c:+ c:c:+ d:d:-  d iu : -  d:a:+ a:a: 

I ,  = 

1 2  = 
b2c2a,d, - b,c,a2d2 

m 5 3 m 3 5 -  m6?m?6 

m5?m35 + m61 m36 
I, = m53m36+ m57m76 

m5?m35' m6?m36 
I, = 

m14m42- m12(m18- mil) 4,  - m i 8 -  m24m42 Is = I6 = 
m24m12+ m14(m18' mil) m14m42- ( m 1 8 -  m 1 1 ) m 1 2 '  

Matrix elements mu are given by the following formulae: 

m,, = a:a:-d:d:  m , ,  = 2(b2c ,a2a ,  - b,c2d2d,)  

mls  = bgc: - b:c: 

m35= - b i d ; -  b:a:+c:a:+c:d: 

m42= b:a:- b:d:-c$d:+c:a: 

2( -b2c ,d2dl  + b l c 2 a 2 a l )  
m24= -b:d:+ b:a:+c:a:-c:d: 

mj6 = 2( - b2bl  d l  a2 + c2c,d2a,)  

m g 3 =  b:a:+ b:d:-c:d:-c:a: m 5 7 = 2 ( b 2 b l d 2 a l  - c 2 c l d l a 2 )  

m6, = bib: -  c:c:+ d i u : -  d:a: m16= -bib:+ c:c:+d:a:-d:a:. 
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